Algebră şi structuri algebrice

Versiune generalizată a aritmeticii, care foloseşte variabile pentru a înlocui numere nespecificate.

Scopul său este de a rezolva ecuaţii algebrice sau sisteme de ecuaţii. Exemple de astfel de soluţii sunt formula pătratică (pentru rezolvarea unei ecuaţii de gradul doi) şi eliminarea Gauss-Jordan (pentru rezolvarea unui sistem de ecuaţii în formă matriceală). În matematicile superioare, o algebră este o structură ce constă dintr-o clasă de obiecte şi un set de legi de compoziţie (asemănătoare adunării şi înmulţirii) pentru combinarea lor.

Structurile algebrice de bază şi cele superioare au în comun două caracteristici: (1) calculele implică un număr finit de paşi şi (2) calculele implică simboluri abstracte (de obicei litere), reprezentând la modul general obiecte (de obicei numere). Algebra superioară (cunoscută şi sub numele de algebră modernă sau abstractă) include întreaga algebră elementară, precum şi teoria grupurilor, teoria inelelor, teoria câmpului, teoria mulţimilor şi spaţii vectoriale.

Publicat în A

Lasă un răspuns

Adresa ta de email nu va fi publicată. Câmpurile obligatorii sunt marcate cu *